Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(3,5-dimethylpyrazol-1-yl)acetic acid

Quang Trung Nguyen and Jong Hwa Jeong*

Department of Chemistry, Kyungpook National University, Taegu 702-701, Republic of Korea

Correspondence e-mail: jeongjh@knu.ac.kr

Received 18 October 2007: accepted 10 December 2007

HO

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.120; data-to-parameter ratio = 13.5.

In the title compound, $C_{12}H_{16}N_4O_2$, the dihedral angle between the two pyrazole rings is $78.17 (7)^{\circ}$. Intermolecular O-H···N hydrogen bonds link the molecules into onedimensional chains along the c axis.

Related literature

For the synthesis of bis(3,5-dimethylpyrazol-1-yl)acetic acid, see: Otero et al. (2004).

Crystal data

C12H16N4O2 $M_r = 248.29$ Monoclinic, $P2_1/c$ a = 8.4317 (8) Å

b = 18.8569 (16) Å c = 8.6083 (7) Å $\beta = 114.576 \ (7)^{\circ}$ V = 1244.69 (19) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 four-circle	1924 reflections with $I > 2\sigma(I)$		
diffractometer	$R_{int} = 0.007$		
Absorption correction: none	3 standard reflections		
2526 measured reflections	frequency: 60 min		
2305 independent reflections	intensity decay: 0.2%		
Refinement			
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture		
wR(F ²) = 0.120	independent and constraine		
S = 1.08	refinement		

ns treated by a mixture of pendent and constrained refinement $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Table 1

2305 reflections

171 parameters

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots N4^i$	0.97 (3)	1.71 (3)	2.676 (2)	172 (3)
Symmetry code: (i)	$x_1 - y + \frac{1}{2}, z + \frac{1}{2}$			

 $(1) x, -y + \frac{1}{2}, z + \frac{1}{2}$

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2077).

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- McArdle, P. (1999). XCAD. National University of Ireland, Galway, Ireland. Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J., Lara-Sánchez, A.,
- Sánchez-Barba, L. & Rodríguez, A. M. (2004). Eur. J. Inorg. Chem. pp. 260-266.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.50 \times 0.40 \times 0.35$ mm

T = 293 (2) K

supplementary materials

Acta Cryst. (2008). E64, o319 [doi:10.1107/S1600536807066391]

Bis(3,5-dimethylpyrazol-1-yl)acetic acid

Q. T. Nguyen and J. H. Jeong

Comment

The title compound, $C_{12}H_{16}N_4O_2$, was synthesized through the protonation of bis(3,5-dimethylpyrazol-1-yl)acetate. This compound was used to prepare 2,2-bis(3,5-dimethylpyrazol-1-yl)ethanol, which was the reagent for the NNO monoanionic heteroscorpionate ligand (Otero *et al.*, 2004). Intermolecular O—H…N hydrogen bonds link the molecules into one-dimensional chains along the *c* axis (Fig. 2 and Table 1). The dihedral angle between the two pyrazol rings is 78.17 (7)°.

Experimental

The title compound was synthesized according to the literature procedure (Otero *et al.*, 2004). Single crystals of the compound suitable for X-ray analysis were obtained by diffusion of ether into a THF solution.

Refinement

All H-atoms except the H atom of the acid group, which was refined isotropically, were positioned geometrically and included in the refinement using a riding model with C—H = 0.98 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for $C(sp^3)$ —H, C—H = 0.96 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃, and C—H = 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for $C(sp^2)$ —H.

Figures

Fig. 1. A view of the title compound. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2. A packing diagram of the title compound viewed approximately perpendicular to the bc plane. Hydrogen bonds are indicated by dashed lines. H atoms of the methyl groups were omitted for clarity.

Bis(3,5-dimethylpyrazol-1-yl)acetic acid

Crystal data

C₁₂H₁₆N₄O₂ $M_r = 248.29$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 8.4317 (8) Å *b* = 18.8569 (16) Å c = 8.6083 (7) Å $\beta = 114.576 (7)^{\circ}$ $V = 1244.69 (19) \text{ Å}^3$ Z = 4

Data collection

Enraf–Nonius CAD-4 four-circle diffractometer	$R_{\rm int} = 0.007$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.8^{\circ}$
T = 293(2) K	$h = 0 \rightarrow 10$
$\omega/2\theta$ scans	$k = 0 \rightarrow 22$
Absorption correction: none	$l = -10 \rightarrow 9$
2526 measured reflections	3 standard reflections
2305 independent reflections	every 60 min
1924 reflections with $I > 2\sigma(I)$	intensity decay: 0.2%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0687P)^2 + 0.2835P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
2305 reflections	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
171 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

 $F_{000} = 528$

 $D_{\rm x} = 1.325 {\rm Mg m}^{-3}$ Mo Kα radiation

Cell parameters from 25 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 9.3 - 11.6^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 (2) K

Block, colourless $0.50 \times 0.40 \times 0.35 \text{ mm}$

methods

x

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

y

 \boldsymbol{Z}

C1	0.01420 (18)	0.19070 (8)	0.40486 (18)	0.0328 (3)
H1A	0.0399	0.2115	0.3135	0.039*
N1	0.17999 (15)	0.17643 (7)	0.54704 (15)	0.0337 (3)
N2	0.19887 (16)	0.18728 (7)	0.71087 (15)	0.0363 (3)
C2	0.36285 (19)	0.16958 (8)	0.80788 (19)	0.0342 (3)
C3	0.4348 (2)	0.17514 (10)	0.9979 (2)	0.0444 (4)
H3A	0.3425	0.1868	1.0313	0.067*
H3B	0.5223	0.2115	1.0366	0.067*
H3C	0.4858	0.1306	1.0481	0.067*
C4	0.4481 (2)	0.14729 (9)	0.7074 (2)	0.0389 (4)
H4A	0.5633	0.1323	0.7462	0.047*
C5	0.3290 (2)	0.15185 (8)	0.5408 (2)	0.0359 (4)
C6	0.3447 (2)	0.13593 (11)	0.3783 (2)	0.0521 (5)
H6A	0.2877	0.0918	0.3328	0.078*
H6B	0.4657	0.1326	0.4000	0.078*
H6C	0.2908	0.1732	0.2975	0.078*
N3	-0.08641 (16)	0.12648 (7)	0.33639 (15)	0.0332 (3)
N4	-0.10877 (16)	0.10578 (7)	0.17637 (15)	0.0341 (3)
C7	-0.1927 (2)	0.04440 (8)	0.1485 (2)	0.0380 (4)
C8	-0.2378 (3)	0.00510 (10)	-0.0153 (2)	0.0554 (5)
H8A	-0.1900	0.0296	-0.0838	0.083*
H8B	-0.3623	0.0023	-0.0763	0.083*
H8C	-0.1900	-0.0419	0.0089	0.083*
C9	-0.2243 (2)	0.02556 (9)	0.2895 (2)	0.0435 (4)
H9A	-0.2817	-0.0150	0.3004	0.052*
C10	-0.15508 (19)	0.07794 (8)	0.4088 (2)	0.0379 (4)
C11	-0.1488 (3)	0.08317 (11)	0.5835 (2)	0.0524 (5)
H11A	-0.0345	0.0981	0.6619	0.079*
H11B	-0.1743	0.0377	0.6178	0.079*
H11C	-0.2335	0.1171	0.5838	0.079*
C12	-0.0880 (2)	0.24644 (8)	0.45592 (19)	0.0379 (4)
01	-0.22573 (17)	0.23504 (8)	0.4587 (2)	0.0652 (4)
02	-0.00521 (16)	0.30749 (6)	0.49036 (15)	0.0442 (3)
H2	-0.052 (3)	0.3382 (14)	0.551 (3)	0.081 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0339 (8)	0.0349 (8)	0.0287 (7)	-0.0003 (6)	0.0123 (6)	0.0000 (6)
N1	0.0312 (6)	0.0405 (7)	0.0293 (6)	0.0031 (5)	0.0126 (5)	-0.0017 (5)
N2	0.0350 (7)	0.0436 (7)	0.0308 (6)	0.0018 (5)	0.0141 (5)	-0.0015 (5)
C2	0.0332 (8)	0.0334 (7)	0.0345 (8)	-0.0007 (6)	0.0126 (6)	0.0020 (6)
C3	0.0430 (9)	0.0520 (10)	0.0347 (8)	0.0046 (7)	0.0127 (7)	0.0033 (7)
C4	0.0326 (8)	0.0428 (8)	0.0412 (8)	0.0068 (6)	0.0154 (6)	0.0044 (7)
C5	0.0360 (8)	0.0351 (8)	0.0395 (8)	0.0031 (6)	0.0187 (7)	0.0009 (6)
C6	0.0519 (10)	0.0673 (12)	0.0419 (9)	0.0139 (9)	0.0242 (8)	-0.0018 (8)
N3	0.0350 (7)	0.0345 (7)	0.0312 (6)	-0.0013 (5)	0.0149 (5)	0.0007 (5)
N4	0.0360 (7)	0.0339 (7)	0.0306 (6)	-0.0017 (5)	0.0121 (5)	-0.0009 (5)

supplementary materials

C7	0.0373 (8)	0.0312 (7)	0.0394 (8)	-0.0002 (6)	0.0100 (6)	0.0009 (6)
C8	0.0637 (12)	0.0465 (10)	0.0476 (10)	-0.0099 (9)	0.0147 (9)	-0.0102 (8)
C9	0.0408 (9)	0.0371 (8)	0.0502 (10)	-0.0053 (7)	0.0165 (7)	0.0064 (7)
C10	0.0333 (8)	0.0412 (9)	0.0399 (8)	0.0027 (6)	0.0160 (6)	0.0077 (6)
C11	0.0513 (10)	0.0659 (12)	0.0472 (10)	-0.0005 (9)	0.0277 (8)	0.0084 (8)
C12	0.0355 (8)	0.0407 (8)	0.0332 (8)	0.0044 (6)	0.0101 (6)	-0.0002 (6)
01	0.0395 (7)	0.0564 (8)	0.1023 (12)	0.0023 (6)	0.0320(7)	-0.0173 (8)
02	0.0562 (7)	0.0363 (6)	0.0463 (6)	0.0003 (5)	0.0276 (6)	-0.0049 (5)
Geometric paran	neters (Å, °)					
C1—N1		1 4496 (18)	N3-		1	3644 (19)
C1 - N3		1 4551 (19)	N3-	_N4	1	3673 (17)
C1-C12		1 535 (2)	N4-		1	325 (2)
C1—H1A		0.9800	C7-	-C9	1	392 (2)
N1		1 3608 (19)	C7-		1	496 (2)
N1_N2		1.3673 (17)	C8-	_H8A	1	9600
N1 - N2 N2 - C2		1.3073(17) 1.327(2)	C8-	H8B		9600
$C_2 - C_4$		1.327(2) 1.400(2)	C8-	H8C		9600
$C_2 = C_4$		1.400(2) 1.403(2)	C8-	-118C	1	360 (2)
C2—C3		0.9600	C9-		1	9300
C3 H3B		0.9600	C10		1	186 (2)
C3_H3C		0.9000	C10	—СП Н11 А	1	0600
C_{4}		1.369(2)	C11	H11R		0.9000
C4—C5		0.0300	C11	H11C		0.9000
C4—114A		1.480 (2)	C11		1	1010 (10)
C_{3}		1.469 (2)	C12	01	1	.1910 (19)
Со—поа		0.9600	02		1	(.515(2))
Со—пов		0.9600	02-	Π2	L.	1.97 (3)
C0—noc		0.9000				
N1—C1—N3		112.50 (12)	H6F	3—С6—Н6С	1	.09.5
N1—C1—C12		110.15 (11)	C10	—N3—N4	1	11.21 (12)
N3—C1—C12		112.56 (12)	C10	—N3—C1	1	31.29 (12)
N1—C1—H1A		107.1	N4-	N3C1	1	17.30 (11)
N3—C1—H1A		107.1	C7-	N4N3	1	.05.74 (12)
C12—C1—H1A		107.1	N4-	—С7—С9	1	10.26 (14)
C5—N1—N2		112.22 (12)	N4-	C7C8	1	20.71 (15)
C5—N1—C1		127.72 (12)	C9-	C7C8	1	29.02 (15)
N2—N1—C1		120.06 (11)	C7-	C8H8A	1	.09.5
C2—N2—N1		104.80 (12)	C7-	C8H8B	1	.09.5
N2-C2-C4		110.80 (13)	H8A	А—С8—Н8В	1	.09.5
N2—C2—C3		120.94 (14)	C7-	C8H8C	1	.09.5
C4—C2—C3		128.26 (14)	H8A	А—С8—Н8С	1	.09.5
С2—С3—НЗА		109.5	H8E	З—С8—Н8С	1	09.5
С2—С3—Н3В		109.5	C10		1	07.06 (14)
НЗА—СЗ—НЗВ		109.5	C10	—С9—Н9А	1	26.5
С2—С3—Н3С		109.5	C7-	—С9—Н9А	1	26.5
НЗА—СЗ—НЗС		109.5	N3-	—С10—С9	1	05.72 (14)
НЗВ—СЗ—НЗС		109.5	N3-		1	25.07 (15)
C5—C4—C2		106.67 (14)	С9-	C10C11	1	29.20 (15)

С5—С4—Н4А	126.7	C10-C11-H11A	109.5		
С2—С4—Н4А	126.7	C10-C11-H11B	109.5		
N1C5C4	105.51 (13)	H11A—C11—H11B	109.5		
N1—C5—C6	123.35 (14)	C10—C11—H11C	109.5		
C4—C5—C6	131.13 (15)	H11A—C11—H11C	109.5		
С5—С6—Н6А	109.5	H11B—C11—H11C	109.5		
С5—С6—Н6В	109.5	O1—C12—O2	125.75 (15)		
Н6А—С6—Н6В	109.5	O1—C12—C1	123.40 (15)		
С5—С6—Н6С	109.5	O2—C12—C1	110.83 (13)		
Н6А—С6—Н6С	109.5	С12—О2—Н2	110.3 (15)		
N3—C1—N1—C5	78.86 (18)	N1—C1—N3—N4	-111.63 (13)		
C12—C1—N1—C5	-154.68 (15)	C12-C1-N3-N4	123.21 (13)		
N3—C1—N1—N2	-100.73 (15)	C10—N3—N4—C7	0.43 (16)		
C12—C1—N1—N2	25.73 (18)	C1—N3—N4—C7	175.80 (12)		
C5—N1—N2—C2	0.43 (17)	N3—N4—C7—C9	-0.02 (16)		
C1—N1—N2—C2	-179.92 (13)	N3—N4—C7—C8	-179.15 (14)		
N1—N2—C2—C4	-0.27 (17)	N4—C7—C9—C10	-0.39 (18)		
N1—N2—C2—C3	179.31 (14)	C8—C7—C9—C10	178.65 (16)		
N2—C2—C4—C5	0.02 (19)	N4—N3—C10—C9	-0.66 (17)		
C3—C2—C4—C5	-179.52 (15)	C1—N3—C10—C9	-175.19 (14)		
N2—N1—C5—C4	-0.42 (17)	N4—N3—C10—C11	178.27 (14)		
C1—N1—C5—C4	179.97 (14)	C1—N3—C10—C11	3.7 (3)		
N2—N1—C5—C6	-179.67 (15)	C7—C9—C10—N3	0.62 (18)		
C1—N1—C5—C6	0.7 (2)	C7—C9—C10—C11	-178.25 (16)		
C2-C4-C5-N1	0.24 (17)	N1-C1-C12-O1	-117.82 (17)		
C2—C4—C5—C6	179.40 (17)	N3-C1-C12-O1	8.6 (2)		
N1-C1-N3-C10	62.62 (19)	N1-C1-C12-O2	63.93 (16)		
C12-C1-N3-C10	-62.5 (2)	N3-C1-C12-O2	-169.64 (12)		
Hydrogen-bond geometry (Å, °)					

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O2—H2···N4 ⁱ	0.97 (3)	1.71 (3)	2.676 (2)	172 (3)
Symmetry codes: (i) x , $-y+1/2$, $z+1/2$.				

